
 
 

A Variational Formulation of Kinematic Waves 1 
 
 

 

A VARIATIONAL FORMULATION OF 
KINEMATIC WAVES:  
BOTTLENECK PROPERTIES AND 
EXAMPLES 
 
 

 

 

 

Carlos F. Daganzo and Monica Menendez,   Institute of Transportation Studies, University of 
California, Berkeley, California, USA   
 

 

ABSTRACT 

It has been recently shown that all kinematic wave traffic problems with concave fundamental 
diagrams can be reformulated as continuum shortest (least cost) path problems in the time-
space domain. This reformulation expands the kinds of kinematic wave problems that can be 
solved efficiently. Examples are inhomogeneous problems with combinations of gradual, 
moving and time-dependent bottlenecks. 
 
The paper examines in detail the special case where the fundamental diagram is triangular. It 
shows that in this case the new procedures compare very favorably with standard methods 
based on conservation laws. The numerical error is shown to be small and uniformly 
bounded; zero in important cases. Formulas and examples are given. 
 
The paper also proves that the maximum difference between the vehicle number function (the 
solution) of any problem with a bottleneck of finite dimension, and the number function of a 
version of the same problem with a point bottleneck cannot exceed the maximum number of 
vehicles that fit in the real bottleneck. When this number is small, point-bottleneck 
idealizations can be used. They require less data and are easier to solve. 
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INTRODUCTION 

This paper proposes two algorithms that, based on a variational version of kinematic wave 
(KW) theory (Daganzo, 2003, 2003a, 2005), can solve complex inhomogeneous KW 
problems with triangular fundamental diagrams (FDs) with precision and simplicity. Methods 
for general concave FDs are discussed in Daganzo (2003, 2003a). The proposed algorithms 
can be used with any combination of gradual, discontinuous, moving and fixed bottlenecks -- 
even if the character of the road changes in space-time; e.g., due to snow-plows. 
 
The gradual fixed-bottleneck problem was introduced in Lighthill and Whitham, (1955) and 
later solved analytically in Newell (1999), but only for some special cases. The discrete 
moving-bottleneck problem was introduced in Gazis and Herman (1992), and formulated as a 
KW problem in Newell (1993 and 1998). Muñoz and Daganzo (2002) modeled it in a more 
general way by treating the moving bottleneck as a special boundary condition. Analytical 
solutions have only been developed for special cases, however. Existing traffic simulation 
methods (e.g., Giorgi et al, 2002, and Daganzo and Laval, 2003) only provide first-order 
approximations for these problems. The new algorithms will be shown to be much better. An 
upper bound for their numerical error will be presented, along with examples. 
 
The paper will also show that real bottlenecks can be approximated by bottlenecks of zero 
length, and how to formulate proper boundary conditions to represent discrete bottlenecks.  
This puts moving bottleneck theory and practice on a solid foundation. 
 
The remainder of this section summarizes the essential facts of variational theory. Following 
sections present: (i) two algorithms to solve a special family of problems (self-similar 
problems) without point bottlenecks; (ii) extensions for problems involving moving point 
bottlenecks; (iii) applications of these results to examine the effect of bottleneck length; and 
(iv) a simple and very accurate solution method to solve general problems with any number of 
moving point bottlenecks.  

Basic Facts 

Consider a one-directional road on which vehicles are conserved, and let x, t, q and k 
respectively denote the distance along the road (increasing in the direction of travel), time, 
flow and density. The last two variables are functions of time and space ),( xtq  and ),( xtk . 
Given is an FD, ),,( xtkQq = , which is assumed to be concave and piecewise differentiable 
in k, and to satisfy q = 0 for k = 0 and k = κ, where κ is the jam density; see Figure 1(a). As 
proposed in Newell (1993a), we shall describe the KW solution in terms of a vehicle number 
function, ),( xtN , whose partial derivatives, tNq ∂∂= /  and xNk ∂−∂= /  are the flow and 
density functions. The KW solution satisfies: ).,,/(/ xtxNQtN ∂−∂=∂∂  
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Figure 1.  Basic concepts of Variational Theory: (a) fundamental diagram, and (b) cost function. 
 

The shortest path problem is formulated in terms of the following “cost” function, R, which 
has units of vehicle number per unit time (i.e., flow):  
 

( ){ }',,sup),,'( kxxtkQxtxR
k

−= .       (1) 
 

Figures 1(a) and 1(b) show graphically how Q and R are related; note that -R is the Legendre-
Fenchel transform of Q. The cost function is a fundamental property of the highway, just like 
the fundamental diagram. Physically, it represents the maximum rate at which traffic can pass 
an observer moving with speed x'. Note that the maximum flow (the highway capacity, qmax) 
is R(0,t,x). For traffic problems R is non-negative, non-increasing, convex (if Q is concave), 
and only defined for the range of valid wave speeds w. (Recall that the wave speed is 

kQxtkw ∂∂= /),,( .)  In the triangular case R turns out to be linear. 
 
The cost function gives the cost per unit time of moving along a space-time path P with 
trajectory x(t).  We say that a path is “valid” if it is a piecewise differentiable curve with 
slopes x' in the range of allowable wave-speeds [ ]),,0(),,,( xtwxtw κ . The cost of traversing a 
valid path is: 
 

( ) ( )∫=∆
P

B

t

t

dtxtxR ,,'P ,         (2) 

 

where tB and tP are the times associated with the path endpoints. Variational theory states that 
if the vehicle number is given along a boundary curve (or curves), D, and we think of these as 
“start up costs”, then the vehicle number at any point in the solution domain is the least cost 
to reach the point with a valid path from the boundary, including the start up cost; i.e.:  
 

( ){ }
PBP

P NN
PVP +∆=

∈
min ,        (3) 

 

where VP is the set of valid paths P from B to P, and BP∈D is the start point of P. Equation 
(3) is a calculus of variations problem. Its iso-cost contours are the vehicle trajectories. 
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Networks 

In this paper, a network is a digraph with nodes L embedded in time-space, with directed arcs 
LL'.  Arcs are defined only for node pairs that can be connected by a valid path.  We call these 
“valid node pairs,” and say that a network is “validly connected” if all its valid node pairs are 
connected by a walk. Each arc is assigned a cost, cLL’, equal to that of an optimum continuum 
path between its end nodes, and a duration and distance, tLL’ > 0 and xLL’, consistent with the 
node coordinates.  
 
It is shown in Daganzo (2003, 2003a) that if the FD is piecewise linear there are networks 
whose shortest “walks” (network paths) between all valid node pairs are shortest continuum 
paths. These networks are said to be “sufficient” because by solving the shortest path problem 
on the network one solves the continuum problem exactly for all its valid node pairs. This is 
advantageous but does not imply exactness. Prediction errors still arise if a network does not 
have enough nodes on the boundary (origins) to sample the data with enough frequency. We 
call these discrepancies “sampling errors.” The rest of this section presents some key results. 

Error Bounds 

To quantify sampling errors, es, we shall assume (reasonably) that the cost function is 
bounded, with RxtkR ~),,( ≤ , and that the boundary data satisfy a Lipschitz continuity 
condition; i.e. that there is a β > 0 such that 
 

,'' BBNN BB −≤− β  D∈∀ ', BB        (4) 
 

where ''' BBBB ttxxBB −+−=− . We quantify sampling frequency with two constants, h 
and τ, as follows. For every valid path to a node L with beginning point BP∈D there should 
be: (i) a network origin B such that hB ≤− PB , and (ii) a short valid path that intercepts the 
original path from B  in time less than τ. Figure 2 illustrates the concept. For any h and τ with 
these properties, sampling errors satisfy: hRes βτ +≤ ~ . 

t

x D
L

X

B
τ

 
 

Figure 2. Interception of an optimum path. 

 
If a network is not sufficient the solution will also include network errors, en. A network 
where the best walk between any valid node pair is within z cost units of the continuum 
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shortest path (i.e., where en ≤ z) is said to be z-sufficient. It is shown in Daganzo (2003) that 
the total prediction error e for a z-sufficient network satisfies ns eee +≤ ; i.e., that:  
 

zhRe ++≤ βτ~          (5) 

Triangular FDs 

The two basic wave speeds of a triangular FD, whether homogeneous or not, will be denoted 
),,0(1 xtww ≡  and ),,(2 xtww κ≡ ; w1 is the free-flow speed and w2 the “backward” wave 

speed. We consider first problems with homogeneous FDs, )(kQq = . The following two 
results, proven in Daganzo (2003a), will turn out to be useful. 
 

Result 1 (sufficiency): If the FD is triangular and homogeneous, all valid paths are 
optimum and all validly connected networks sufficient.  

 
Since all valid paths are optimum, a straight path is optimum.  Therefore, in this case it is easy 
to set up networks and calculate their arc costs; the arc cost formula is:  
 

)'('' xRtc LLLL = ,  where '' /' LLLL txx = .      (6) 
 

 

This leads to the following: 
 

Result 2 (exactness): If (i) the FD is triangular and homogeneous, (ii) the network is 
validly connected, (iii) the data and the boundary are linear between network origins, 
and (iv) the network contains straight walks with speeds w1 and w2 from the boundary 
to every node, then e = 0.  

 
Result 2 is true because problem (3) is a linear program, so that its optimum paths must either 
emerge from vertices or have extreme speeds. 
 
Inhomogeneous roads where the FD changes with space by a similarity transformation also 
have useful properties. In these cases, the FD is )),(/(),(),( xtkQxtxkQq o αα=≡ , where 

0),( >xtα  is a proxy for the number of available lanes, which can vary with t and x. The 
similarity relation implies that the wave speeds are space-independent and that the cost 
function is self-similar: )'(),(),,'( xRxtxtxR oα= . If a highway is homogeneous then ),( xtα  
is constant, αα =),( xt . If it includes a moving bottleneck then αα <),( xt  in a space-time 
swath along the bottleneck trajectory of a width comparable with the length of the bottleneck. 
The following result, proven in Daganzo (2003a) with calculus of variations, will be useful.  
 

Result 3 (shortest paths): If (i) the FD is triangular and self-similar, and (ii) α(x) is 
non-increasing (non-decreasing), then the valid path that connects P and P' with the 
highest (lowest) possible trajectory is shortest.  
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Because the wave speeds are constant, these extreme paths are bilinear (piecewise linear with 
two components) as shown in Figure 3. Note that if α(x) decreases (the highway narrows), the 
optimum path from P to P' is concave - leaving P with slope w1 and reaching P' with slope w2 
when the slope of 'PP  is neither w1 nor w2. If the highway widens the path is convex. We 
now turn our attention to more practical matters. 
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Figure 3.  Shortest paths for similar-monotonic cost functions: (a) decreasing α(x) (road narrows), 
and (b) increasing α(x) (road widens). 
 

SELF-SIMILAR PROBLEMS 

We examine here procedures for solving general self-similar problems, and then analyze their 
accuracy.  

Solution Methods 

The procedures in question have two basic features: an efficient network geometry and a fast 
shortest path algorithm. They are now described. 
 

Geometric networks: A geometric digraph formed by two families of parallel 
equidistant lines with slopes wi and time separations εi  (i = 1, 2) is called a geometric network 
if all its arcs point in the direction of increasing time. Figure 4(a) displays an example. Note 
that nodes exist at every intersection and that they form an oblique lattice. Note too that any 
connected subgraph of a geometric network is a validly connected network. In the special case 
where εεε ≡= 21 , the lattice includes space-rows, as shown in Figure 4(b). The row spacing 
is denoted δ. 

 
Lopsided networks: Assume now that we delete any number of space rows from a 

geometric network with space rows, but maintain all the node connections across the deleted 
rows as shown in Figure 4(c). Assume too that we introduce horizontal links along all the 
remaining rows, also as shown. It then turns out that the resulting network is validly 
connected, as the reader can easily verify. 
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We call these networks “lopsided” because the row spacing can be increased as much as 
desired without changing ε by selective deletion of rows. This is of considerable 
computational advantage when results are only sought at widely spaced locations. Note that 
every node L of a lopsided network has exactly three “from” nodes. In this case too, the row 
spacing is denoted δ. 
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Figure 4.  Network types: (a) geometric, (b) geometric with space-rows, and (c) lopsided. 

 
Shortest path method: To solve a problem we first assign costs cLL’ to every link, and 

then use a shortest path algorithm to compute the optimum cost for every node in the solution 
domain, cL. Costs for origin nodes are known since they are part of the boundary data: 

LL Nc = . Link costs should be computed by minimizing Eq. (2). In the homogeneous case the 
answer is Eq. (6). In the self-similar case we can simply evaluate the cost of an extremal path 
for each arc; see Result 3. If we use a geometric network with short arcs we can also use Eq. 
(6) as an approximation with R(x’) replaced by R(x’,t,x) and evaluated at the midpoint of the 
arc. This only introduces errors of order )( 2εO  as 0→ε , and can be done even in the 
general non-self-similar case. 
 
Since our networks have translational symmetry, dynamic programming (DP) can be used for 
the optimization. As a result, the calculation effort to obtain all the cL only increases linearly 
with the number of arcs. The recursion is: 
 

{ }')'(' min LLLLFLL ccc +=
∈

,         (7) 
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where F(L') is the set of “from” nodes for L'.  When the DP algorithm is used with a 
geometric (or lopsided) network it will be respectively called the GDP (or LDP) algorithm. 
Since both network types are sparse (with only 2 or 3 links per node) the calculations of Eq. 
(7) involve a very small number of comparisons and additions per node. The effort per node is 
comparable to that required by solution methods based on conservation laws. The LDP 
method requires considerably fewer nodes, though. 

Accuracy 

Since a geometric network includes walks with the extremal property of Result 3 for every 
valid node pair, it follows that a geometric network is sufficient for the self-similar problem if 
α is non-decreasing (or non-increasing). Consideration shows that this continues to be true for 
problems with general but time-independent α(x) if we add nodes and horizontal links with 
appropriate costs at all the locations where dxxd /)(α  is a minimum; i.e., at bottlenecks. 
Therefore, the GDP algorithm avoids network errors in the self-similar case. Note too from 
Result 1 that both DP algorithms avoid network errors in the homogeneous case. 
 
In the above instances only sampling errors remain. According to Eq. (5) these sampling 
errors are bounded by: hR βτ +~ . For a geometric network with space rows the parameters 
τ and h are respectively bounded by ε and (ε+2δ). Thus, the sampling error is bounded by 
ε[ R~ +β+2β(δ/ε)]. Since δ/ε = (w1

-1- w2
-1)-1, we see that the quantity in brackets is a constant. 

Hence, the error bound is O(ε) and uniform; i.e., it is independent of the size of the solution 
domain.  The bound can be tightened in two important cases: (i) homogeneous problems with 
linear data between origin nodes (when e = 0); and(ii) problems with smooth data (when e = 

)( 2εO  for 0→ε ). 
 
The exactness of case (i) is a direct consequence of Result 2. The situation arises frequently, 
since data for typical problems is usually available in piecewise linear (PWL) form. 
 
Case (ii) applies when both the data and the boundary can be expressed as smooth functions 
of a parameter, π, such that the maximum jump in π across consecutive origins is O(ε). The 
result is true because under its conditions the least cost to reach L from a point on the 
boundary, NL(π), is a smooth function, with a smooth global minimum, NL. Since sampling 
errors for smooth minima become quadratic in the sampling interval if the sampling intervals 
are reduced toward zero, and since the sampling intervals are O(ε) for 0→ε , it follows that 
the error is )( 2εO  for 0→ε . 
 
As an illustration of this result, Figure 5 shows how the GDP algorithm performs with one of 
the examples in Newell (1999). The example involves a self-similar highway with a re-scaled 
triangular FD that varies with x (w1 = ∞, w2 = -1 and qmax = ½ x2), and gradually increasing 
upstream flow (q = t for 0≥t ). Note that Newell's figure (and ours as a result) display 
distance in the reverse direction, using x* = -x instead of x. The example is of interest for its 
difficulty. In particular note that conventional methods for conservation laws would either 



 
 

A Variational Formulation of Kinematic Waves 9 
 
 

 

introduce infinite errors or use an infinite computation time, since the maximum wave speed 
is infinite. The GDP algorithm, however, works without a glitch. Part (a) of the figure is a 
reproduction of the exact wave map in Newell (1999) including the shock-path (q* on the 
abscissa stands for either flow or time in this reference.) Figure 5(b) is the wave-map 
produced by the GDP algorithm. It matches Figure 5(a) remarkably well in all respects, 
including the shock-path and the position where the shock first develops at (t, x*) = (0.5, 1). 
Figure 5(c) gives the vehicle trajectories produced by the new algorithm. Note how the shock 
develops. Figures 5(b) and 5(c) were obtained with a very dense network that allowed us to 
estimate the solution at many relevant points appearing in Figure 5(a). Nevertheless the GDP 
algorithm is very accurate with large time steps. Figure 5(d) compares the estimated and exact 
vehicle number across time at three different locations when the time step of the GDP 
procedure is 0.1 time units. The error bound in this case turns out to be 0.00125 vehicles 
everywhere in the solution domain - imperceptible to the eye. 

  
(a)           (b) 
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Figure 5.  Solution of a gradual bottleneck problem: (a) exact wave map, (b) numerical wave map, 
(c) vehicle trajectories, and (d) normalized vehicle numbers, N*, with N/N*=1, 10, 100 for x*=0.5, 1.5, 
2.5, respectively. 
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MORE GENERAL PROBLEMS WITH POINT BOTTLENECKS 

This section examines the structure of optimum continuum paths in a very general class of 
problems involving non-similar highway sections and any number of point bottlenecks. The 
results are then used in the following section to examine the effect of bottleneck length, and 
later to show how this class of general problems can be solved.  
 
We consider first a homogeneous highway that includes a single bottleneck. We assume that 
the bottleneck describes a valid path S with trajectory xB(t), and that the unit cost along it rB(t) 
is less than or equal to R(x’B(t)) for all t. This allows us to state the following; see Figure 6(a): 

 
Shortcut Theorem: If a problem is homogeneous and two points, P and P’, can be 
connected by a path that touches the bottleneck, then a path from P to P’ is optimal if 
it has the following structure: (i) an access path from P to the earliest possible ∈S S; 
(ii) a continuous portion of the shortcut from S to the latest possible ∈'S S; and (iii) an 
egress path from S’ to P’. 
 

Proof: We show first that an optimum path does not have to leave and return to the 
shortcut. This is true because the cost of any bypass is always matched by the cost of a 
competing path that is infinitely close to the shortcut (see Result 1), and because the 
cost of the competing path cannot be less than the cost of a similar path that would use 
the shortcut - since the shortcut has an equal or smaller unit cost than parallel, 
neighboring paths. Hence, the shortcut only needs to be left once. It follows that there 
is an optimum path with only three components for: (i) access, (ii) use and (iii) egress 
from the shortcut. 
To complete the proof we now show that the access and egress components with the 
shortest possible durations do the job. This is true for the access part because if the 
path were to join the shortcut at a later point than S, ∈bS S, as shown in Figure 6(a), 
its cost could not decrease. The reason is that before the change, the cost of reaching 
Sb was the sum of the cost of the path from P to S plus the cost of the shortcut from S 
to Sb. But after the change, the cost is given by any valid path from P to Sb that does 
not use the shortcut (as per Result 1); e.g., by a path that shadows the “before” path 
arbitrarily close to the shortcut without using it. The cost of the new path is obviously 
higher or equal. The same lines of reasoning also reveal that the egress part should be 
of the shortest possible duration.  

 
Note that the access and egress portions of the optimum paths identified by the Shortcut 
Theorem are straight and have slopes w1 or w2, unless they connect P to the beginning of the 
shortcut or the end of the shortcut to P’.  
 
The result also holds for self-similar highways where α(t, x) is non-increasing in x 
(narrowing) upstream of S, and non-decreasing (widening) downstream. The reason is that 
under these conditions, paths on the upstream side should be as high as possible and on the 
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downstream side as low as possible (recall Figure 3). When this happens the steps of the proof 
continue to hold. The steps hold even if the upstream portion of the highway is not similar to 
the downstream portion, as suggested by Figure 6(b). In this figure, arrows indicate the 
direction in which α(t,x) decreases with x. Cost functions where α is monotonic in x are said 
to be “similar-monotonic” (SM). The following corollary summarizes these ideas:  
 

Corollary 1: The result of the shortcut theorem also holds if the cost function is: (a) 
homogeneous outside the time range of the bottleneck; and (b) SM upstream and 
downstream within the range, with the following properties: 
(i)   Upstream: )'(),( xRxtR oα= , ),( xtα  non-increasing in x for )(txx B≤ ; 
(ii)  Downstream: )'(),( xRxtR oα= , ),( xtα  non-decreasing in x for )(txx B≥ ; 
(iii) { }))('())(,()),('())(,(min)( txRtxttxRtxttr BoBBoBB αα≤ .  

 
Note that the corollary applies to shortcuts of both, finite and infinite range. Note too that the 
access and egress portions of the optimum paths identified by the Shortcut Theorem and this 
corollary have maximum slopes, unless, as before, they connect P to the beginning of the 
shortcut or the end of the shortcut to P’. The same reasoning of the shortcut theorem also 
reveals that paths where α(t, x) is a maximum with respect to x, “reverse-bottlenecks”, never 
have to be used. 
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Figure 6. General problems with point bottlenecks: (a) Shortcut Theorem, (b) Corollary 1,                  
(c) Optimum Path Theorem, and (d) composite geometric network. 
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All of the above suggests that problems with multiple bottlenecks can perhaps be analyzed by 
decomposing their solution domain into regions describable by Corollary 1, as in Figure 6(c)-- 
in this case too, arrows indicate the direction in which α(t, x) decreases with x.  To formalize 
this idea, let us define a quasi-monotonic problem as one whose solution domain can be 
partitioned by continuous curves into subregions where the cost function is similar-
monotonic. Then, we have: 
 

Optimum Path Theorem: If a problem is quasi-monotonic, then an optimum path 
between two points exists that is only composed of one or more pieces of the 
following two types: (i) continuous sections of bottlenecks, and (ii) straight segments 
with extremal slopes, w1 or w2, appropriate for the subregion containing the segment. 
 

Proof: The non-bottleneck portion of an optimum path can be divided into continuous 
parts, each embedded in a similar-monotonic subregion. Every one of these parts must 
minimize the cost between its endpoints. Result 3 guarantees that this is achieved for 
each part by a bilinear sub-path with extremal slopes w1 and w2, appropriate for its 
subregion.  

 
The class of quasi-monotone problems is very broad; it seems to encompass all KW problems 
of practical interest, or at least all those formulated to date. For example, the highway can be 
piecewise similar or piecewise homogeneous with time-dependent features; and any of these, 
not just the capacity, can be changed by moving bottlenecks. An example of the latter is a 
snowplow that changes with its passage both, the free-flow speed and the number of available 
lanes. The theorem underpins the justification given later in this paper for using geometric 
networks to solve quasi-monotone problems. The basic idea consists in using a geometric 
network with appropriate slopes and costs within each monotone subregion of the solution 
domain, and then stitching together these networks by adding along the sub-regional 
interfaces nodes and links with relevant costs; see Figure 6(d). Nodes and links with reduced 
costs should also be added along the trajectories of point bottlenecks. 
 
If the same composition idea is used with the Shortcut Theorem instead of Corollary 1 we 
find the following stronger result for problems where bottlenecks and reverse bottlenecks 
partition the solution domain into homogeneous parts (quasi-homogeneous problems). 

 
Corollary 2: If a problem is quasi-homogeneous, then an optimum path to a point 
exists that is only composed by one or more pieces of the following three types: (i) 
continuous sections of bottlenecks; (ii) least-duration access and egress sub-paths as in 
the Shortcut Theorem; and (iii) inter-bottleneck sub-paths, each with either maximal 
or minimal slopes.  
 

Proof: Only (iii) needs proof. Geometrical considerations show that if a connector 
between bottlenecks were not to have either maximal or minimal slope, we could then 
find a cheaper connector, of greater or smaller slope, that would shadow one of the 
bottlenecks for a short time.  
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Corollary 2 applies to piecewise homogeneous highways. It will be the justification for 
modeling them with lopsided networks. Before this is done, we examine a question that seems 
to have generated some confusion in the literature. What effect can the length of a bottleneck 
have on traffic flow? 
 

THE EFFECT OF BOTTLENECK LENGTH 

The results of the previous section are now used to answer the question. We will assume in 
this section that the bottleneck moves with non-negative speed and that its trajectory S is 
contained in a space-time swath of width ll ≤)(t distance units.  
 
Our problem is defined as follows. Inside the swath, R is defined as in Corollary 1. Outside 
and upstream of the swath, )'(xRR ooα= , with ),( xto αα ≥ . Outside and downstream, 

)'(xRR ooα= , with ),( xto αα ≥ . We shall denote the upstream and downstream jam 
densities outside the swath κ  and κ , respectively. Obviously, Corollary 1 applies to the 
complete problem.   
 
We are interested in evaluating the accuracy of a point-bottleneck approximation with the 
same S and rB(t), but a new cost function )'(ˆ xRR ooα= for )(txx B<  and )'(ˆ xRR ooα=  for 

)(txx B> . The new cost function is homogeneous both, upstream and downstream of S. 
Corollary 1 also applies to this approximation. We are now in position to establish the main 
result of this section. 
 

Result 4 (bottleneck length): The difference in vehicle number between the solutions 
of the original problem and the point-bottleneck approximation is bounded from above 
by ),max( κκl  at every point of the solution domain. 
 

Proof: Since Corollary 1 applies to both problems, the paths of the Shortcut Theorem 
are optimum for both problems. Their unit costs can only differ for the access/egress 
portions internal to the swath. The unit costs vanish for paths with slope 1w  or 1w . 
Therefore, only access/egress portions with slope 2w  or 2w  contribute to the 
difference. If we let 2t  and 2t  be the time duration of the portions with slopes 2w  

and 2w , we see that the cost difference cannot exceed 2222 )(ˆ)(ˆ twRtwR + . Note, 
however, that for homogeneous FDs κ22 )( wwR = . Thus, the bound is 

2222 twtw κκ + . Since the speed of the swath is non-negative we can write 
l≤+ 2222 twtw . Hence, the bound satisfies ),max(2222 κκκκ l≤+ twtw . Since the 

bound defined by the right side of this inequality applies to every pair of points, it 
follows that the difference in the predicted vehicle numbers for both problems, 
including the effect of the boundary data, cannot exceed ),max( κκl . 
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The quantity ),max( κκl  is a uniform error bound when one uses a point-bottleneck 
approximation. Thus, a simple rule is that the error in vehicle number cannot exceed the 
maximum number of vehicles that fit alongside the bottleneck. Obviously, the error is 
negligible for bottlenecks such as traffic signals, trucks, buses, snowplows, convoys of a few 
vehicles, and other localized restrictions. Figure 7 shows the exact and approximated solution 
for an example involving a gradual lane drop spanning ¼ mi.  
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Distance from bottleneck = 0.25 miles
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Distance from bottleneck = 0.45 miles
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Distance from bottleneck = 0.55 miles
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Figure 7.  Error of point-bottleneck approximation. The smooth lines correspond to the exact solution 
(0.25 mile gradual bottleneck) and the dotted lines to the approximation (point-bottleneck). 
 
The highway is self-similar with a triangular FD that varies with the upstream distance from 
the bottleneck: 

w1 = 60 mph 
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w2 = -15 mph  
qmax= 2

10 )( x−+ lγγ   for l≤≤ x0 , qmax= 02γ  for 0≤x , and qmax= 0γ  for l≥x , 
where 0γ = 2000 vph, 1γ = 32000 vph/mi2, and l  = ¼ mi. 
The upstream flow is assumed to increase gradually with time: 

tq 32 γγ += ,  
where 2γ =2000 vph and 3γ =10000 vph/hr. 
 
The figure shows the cumulative vehicle number at six different locations as a function of 
time. According to Result 4, the error from an approximation using a point-bottleneck cannot 
exceed 83),max( =κκl  vehicles. This is consistent with the numerical results of the figure, 
which show a maximum error of around 40 vehicles. The error grows initially as we move 
away from the bottleneck, but after a certain point it stabilizes, as expected. 
 

GENERAL SOLUTION METHOD 

We now show and demonstrate with examples how to solve general quasi-monotonic 
problems with point bottlenecks. General quasi-monotonic problems with multiple point 
bottlenecks can be handled by superimposing all the point bottleneck shortcuts on a stitched 
network with geometric components, such as the one in Figure 6(d), adding nodes at the 
points of intersection, and connecting these with links of proper cost. Consideration shows 
that any such network contains walks parallel and very close to the relevant paths specified by 
the Optimum Path Theorem. This is also true of networks composed of lopsided components 
if the problem is quasi-homogeneous, by virtue of Corollary 2.  

Accuracy 

The error introduced by these procedures at a point P is bounded by a quantity that tends to 
zero as 0→ε  if both the duration and number of sub-paths of the relevant optimum path 
specified by the Optimum Path Theorem are bounded. Consider any such relevant path. For 
sufficiently small ε there always is a “nearest” walk that differs from the shortest path only in 
the duration and time-displacement of corresponding sub-paths, and not in their slopes. These 
discrepancies are of order O(ε). Since the number of sub-paths is O(tP), the cost difference 
caused by all the duration discrepancies should be O(ε tP) as 0→ε . The cost difference 
caused by each displacement can grow at most with the product of displacement and sub-path 
duration. Therefore, the total displacement error is also of order O(ε tP) as 0→ε . Thus, both, 
the combined network error and the prediction error in NP must be O(ε tP) as 0→ε . 
 
For piecewise homogeneous problem the displacement error vanishes. Then, if the number of 
sub-paths in the relevant optimal path to P is uniformly bounded across all points -- a usual 
case in practical applications -- the network error is O(ε) as 0→ε . This bound is problem-
dependent, but uniform.  
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Examples 

We illustrate the accuracy and flexibility of the method with two examples. The first one, 
adapted from Daganzo and Laval (2003), includes a moving bottleneck on a homogeneous 
highway. The results of the proposed method are favorably compared to those in Daganzo and 
Laval (2003).  The second example is more complicated; it assumes that the bottleneck 
changes the character of the road (as a snowplow or a police car would) and that the highway 
is inhomogeneous. 

Example 1: 

Consider a one-mile homogeneous freeway whose FD is an isosceles triangle with free flow 
speed, w1 = 60 mph, backward wave speed, w2 = -60 mph, and capacity, qmax = 9000 vph. 
These parameters are not realistic, but were chosen in Daganzo and Laval (2003) to separate 
the error of their procedure from those of the numerical KW solver—which could only handle 
isosceles FDs exactly. The freeway is initially in a steady state flowing at capacity when, at t0 
= .3 min and x = .3 mi, a truck traveling at  vB = 20 mph enters the road. The truck maintains 
this speed until t = 2.1 min, when it leaves. It is assumed that the maximum rate at which 
traffic can pass the truck is rB = 3000 vph. 
 
Figure 8(a) shows a time-space diagram with the exact solution of this problem, including all 
its shocks and interfaces, and the moving bottleneck. The figure also shows by means of solid 
horizontal lines the trajectories of six detectors. Figure 8(b) shows the (geometric) network 
we used to solve this problem with a discretization of ∆t =6 secs, including the shortcut for 
the moving bottleneck. Figure 9(a) shows the N-curves for both, the solution in Daganzo and 
Laval (2003), which used ∆t =6 secs (wiggly lines), and the exact solution (smooth lines). 
Figure 9(b) shows the results from variational theory. They match the exact solution without 
any error.  
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Figure 8.  Example 1: (a) time-space diagram; (b) network with shortcut. 
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     (a)                          (b) 

 

Figure 9.  Example 1: (a) N-curves at six locations from Daganzo and Laval (2003); (b) N-curves at 
six locations from variational theory.  The smooth lines are the exact solution. 

Example 2: 

This example includes a moving bottleneck that changes the character of the road as it travels 
through it. We still consider a one-mile homogeneous freeway flowing at capacity, described 
by an isosceles FD diagram with free flow speed, mph 601 =w , backward wave speed, 

mph 602 −=w , and capacity, qmax = 9000 vph. In the present case, however, a slow moving 
police car with vB = 20 mph enters the highway at t0 = .3 min and x = .3 mi, “reminding” 
every vehicle that passes it to adopt the speed limit, mph 301 =w . (These unrealistic numbers 
have been chosen to dramatize the effects in our figures, but as we have proven in previous 
sections the procedure would perform equally well with realistic data.)  In essence, the police 
car changes the FD downstream of its position. The downstream FD is not an isosceles 
triangle any more: its jam density and the backward wave speed remain unchanged (e.g., 

mph 6022 −== ww  but its free-flow speed becomes 11 mph 30 ww ≠= .  To complete the 
formulation we assume that “rubbernecking” restricts the maximum rate at which traffic can 
pass the police car to rB = 1800 vph.  
 
As in the previous example, Figure 10(a) is a time-space diagram with the exact solution, 
including relevant interfaces and the trajectories for the police car and six detectors. Figure 
10(b) shows the composite network for this problem, including the shortcut. Note the 
different slopes of the “free-flow” arcs, upstream and downstream of the shortcut.  Different 
time increments were also used on each side of the shortcut for convenience. Figure 10(c) 
shows by means of continuous lines the exact N-curves for this problem, plotted on an oblique 
coordinate system.  Dots display the results of the procedure. There is no error. 
 
The procedure is just as quick for problems that cannot be solved easily by other means. 
Consider the same police car as before, but assume now that the highway is self-similar and 
inhomogeneous, including a gradual bottleneck: 
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qmax= 2
10 )( x−+ lγγ   for l≤≤ x0 , qmax= 05.1 γ  for 0≤x , and qmax= 0γ  for l≥x , 

where 0γ = 6000 vph, 1γ = 3000 vph/mi2, and l  = 1 mi. 
 
The backward wave speed and the free-flow speed are assumed to be the same as before -- the 
latter dropping to 30 mph downstream of the police car.  We assume that the maximum 
bottleneck passing rate depends on location and obeys: rB = qmax/5. It is still 1800 vph 
upstream of the bottleneck, i.e., 0≤x . To solve this problem we can still use the network of 
Figure 10(b), but with updated link costs, of course. Figure 10(d) shows the solution. A 
comparison with the exact solution is not made, but we know from the results of this paper 
that the numerical solution has a negligible error. In comparing with part (c), note the 
curvature of the new N-curves, and their uneven separations.  
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Figure 10. Example 2: (a) time-space diagram, (b) composite network grid and shortcut, (c) N-curves 
at six locations in oblique system: homogeneous highway, and (d) N-curves at six locations in oblique 
system: inhomogeneous highway. Continuous lines in part (c) correspond to the exact solution.  
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FINAL REMARKS 

This paper has introduced recipes to solve complex KW problems with precision and 
simplicity. The techniques are especially useful for inhomogeneous KW problems with 
multiple moving bottlenecks. They can be used even if the bottlenecks change the character of 
the road as they move through it.   
 
The new methods are now being applied to complex real-life problems with combinations of 
gradual, moving and time-dependent bottlenecks. They can help improve hybrid 
(discrete/continuous) models of traffic flow, where trucks and other slow vehicles are 
modeled as underpowered discrete particles that can both generate queues and be slowed by 
them; see Laval and Daganzo (2004). Hybrid models that include lane changing are currently 
being implemented, and initial tests with real data are very encouraging (Laval and Daganzo, 
2004a). These models, for example, appear to explain the strange observations of moving 
bottlenecks reported in Muñoz and Daganzo (2002), and the detailed merge bottleneck 
phenomena in Cassidy and Rudjanakanoknad (2004). The new methods can also be used to 
simulate intermittent bus lanes and HOV lanes. 
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