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Abstract

1. This paper addresses some issues that arise in the planning and design of logistics systems when
the environment in which they are to be operated cannot be modeled accurately with certainty.
The paper describes the analytical difficulties introduced by explicitly considering uncertainty, and
suggests possible modeling steps that may result in more efficient, uncertainty-friendly plans.
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1 Introduction

2. The two main goals of this paper are: (i) to describe the difficulties introduced by uncertainty

in the planning and design of logistics systems, and (ii) to suggest approximate methods to

systematically analyze the effects of uncertainty. The ideas are illustrated by means of two

examples.

3. The effectiveness of conventional mathematical analysis methods, e.g. numerical optimiza-

tion and optimization-based heuristics, for solving large-scale transportation/logistics problems

involving deterministic data is well known. Example applications include vehicle routing, as

indicated by the extensive literature on the “VRP” problem (see Fisher [10] and Bramel and

Simchi-Levi [2] for recent reviews), and network problems such as the airline fleet assignment

problem (see, e.g. Rushmeier and Kontogiorgis [14] or Hane et al. [13]) and the crew pairing

problem (see, e.g. Vance et al. [15]).

4. Unfortunately, the standard methodologies are difficult to apply when uncertainty is a

significant issue (i.e. for planning and design problems) and the solution effectiveness is notably

reduced. In traditional stochastic programming approaches, approximate deterministic formula-

tions are employed where uncertain values are replaced by expected values or by percentiles, but

this is only appropriate for some problems and cannot always be done accurately and realistically.

Stochastic optimal control theory and dynamic programming offer better ways to incorporate ran-

domness into the optimization of systems that evolve over time (or another single dimension)

but the scope of the problems that can be solved in this way is extremely narrow. The extensive

literature that exists on the relatively simple problem of determining optimal inventory re-order

policies from a single store [12] is an indication of the difficulties introduced by randomness.

Thus, it should not be surprising to see that to solve large-scale problems involving uncertainty

analysts invariably resort to heuristic formulations; e.g. of the “rolling horizon” type.

5. It should be clear that if one cannot anticipate when extra resources will be needed for a

given task, a logistics system must be redundant; e.g. by maintaining larger inventories, using

larger vehicle fleets, or by some other means. The challenge is to determine the most cost-effective

form of redundancy required, and an operating/control strategy that will be able to exploit it.

The goal of an analysis should be to explore the broadest possible space of system designs using

an objective function that properly captures uncertainty. Since carefully idealized systems often

can be examined accurately in generality, it is suggested in this paper that the possible forms
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of redundancy should always be explored systematically with idealized models before embarking

on a detailed numerical analysis.

6. Using two deterministic examples, Section 2 examines the issues introduced by uncertainty.

Section 3 then describes its conventional treatment, the simplifications that are usually made,

and suggests possible remedies; the examples of Section 2 are analyzed as proposed. Section 4

provides some closing comments.

2 Deterministic Analysis and Uncertainty

2.1 The static vehicle routing problem (VRP)

7. The vehicle routing problem has many variants and we consider here the problem of minimizing

the transportation cost required to deliver (or collect) lots of small but varying sizes from a set

of scattered customers with vehicles of fixed capacity, V . Transportation costs are assumed to

be a linear function of the fleet size and the total vehicle distance traveled.

8. Suppose now that the problem involves many customers and many vehicle tours, and that

a customer’s demand can be split between vehicles. An efficient strategy in this case is to divide

the service region into non-overlapping delivery zones containing V units of demand, elongating

these zones toward the depot with a width that depends on the local density of customers, δ, as

shown in Figure 1(a) and explained in [5], and then to route a vehicle within each zone with an

“up and down” strip strategy [6]. If the delivery lot of the last customer in a tour does not fit in

the vehicle, then that customer should also be visited by the following tour. If the delivery zones

dove-tail reasonably well, then the distance of the VRP can be approximated by the integral over

the service region of the following expression [5]:

2rδ/C + 0.57δ1/2 (1)

which represents the delivery distance per unit area. In this expression r is distance from a point

in the delivery zone to the depot and C is the average number of stops made by a vehicle; i.e.

the ratio of V to the average delivery lot size, v. We assume for clarity of exposition that C

is independent of location but δ may vary. Let us now examine the effect of using overlapping

zones (redundancy).

9. If the stops in an area A3 were to be allocated to two different tours, as shown in Figure

1(b), the calculation would be different. One would have to calculate the distances for tours 1
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Figure 1: Non-overlapping (a) and Overlapping (b) Vehicle routing zones

and 2 separately by integrating (1) over the two zones A1 ∪ A3 and A2 ∪ A3, using in each case

the proper customer density within A3. Suppose the customer densities for tours 1 and 2 in A3

are δ1 > 0 and δ2 > 0 (δ1 + δ2 = δ). Consideration shows that if this is done then the total

distance always exceeds that of the non-overlapping case by an amount:

∆ =
∫
A3

0.57[(δ1/2
1 + δ

1/2
2 )− (δ1 + δ2)1/2]da ≥ 0 (2)

where da is the differential of area. Note that ∆ can never be negative, independent of our

choices for A3, δ1 and δ2, because the square root function is subadditive. This result suggests

that geographical areas should be served (non-redundantly) by single vehicles, but assumes that

tours can be built with perfect a-priori information regarding lot sizes.

10. If customer locations and/or lot sizes are uncertain when planning, the fixed-zone strategy

may be impractical, since the demand of some zones may exceed vehicle capacity. The desirability

of alternative schemes then will depend on how and when lot size information becomes available

and the degree of control that a dispatcher can exert over en-route vehicles. Researchers have

attempted to address the problem when customer lot size information becomes known only after

the arrival of the vehicle. Unfortunately, all of the mathematical algorithms that have been
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proposed to date are based either on operating conditions that are unlikely to be feasible in

practice as occurs for TSP partitioning heuristics [1], or on feasible forms of operation that are

too restrictive to be appealing in practice. More discussion of these issues can be found in [9].

11. Demand that is uncertain prior to vehicle arrival may be managed for example by

designing delivery zones as if the vehicle capacity were smaller (V − < V ) to ensure that few

tours would overflow, and then serving the overflow customers with a set of secondary “sweeper”

tours [7]. Gendreau et al. [11] optimizes such a scheme, but assumes quite restrictively that each

sweeper tour can serve only the customers left behind by a single primary tour. More appealing

ways of introducing redundancy exist but they are difficult to optimize with numerical methods.

For example, redundancy can be introduced by: (i) eliminating the single tour restriction, (ii)

designing overlapping routes as in Figure 1(b) to allow vehicles to cover for one another, and

(iii) instructing vehicles with remaining capacity after their last delivery to stay where they are

(or even reposition to strategic locations) so that they can more efficiently “sweep” the overflow.

A mixed strategy combining elements of (i), (ii), and (iii) also may be desirable. Section 4 will

show how strategy (i) can be designed using idealized models as an evaluation tool.

2.2 The warehouse location-inventory-routing problem (WLIRP)

12. The second example involves determining the number and location of warehouses to be

supplied from a factory, and the vehicle routes and delivery schedules from the warehouses

that are needed to serve a set of customers with time-dependent demands. The objective is

to minimize the sum of the transportation, warehousing and customer inventory costs. This

planning problem is very common; it arises for example in companies such as Clorox (consumer

goods) and Safeway (grocery stores). As explained in [8], efficient designs for this type of problem

do not require geographical redundancy when demands are known. Furthermore, detailed designs

can be obtained via numerical optimization, as explained below.

13. Let xij be the distance from warehouse i to customer j. If the transportation cost cij of

delivering dij items to j from i can be expressed as cij = Aj + Bidijxij, independently of how

many items are delivered to other customers, and if the transportation costs from the factory,

o, to warehouse i are proportional to the item-Kms sent, dioxio (so that cost = B′idioxio), then

it is relatively easy to find efficient system designs as explained in paragraph 14. The two cost

expressions just introduced are good approximations for many forms of transportation, although

this may not always be apparent. For example, if deliveries from every warehouse occur with
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VRP tours under the conditions described in paragraph 8, then the proposed expression for cij
holds with Aj = 0.57δ−1/2

j and Bi = 2/Vi. (The subscripts j and i have been used with δ and V

to stress that the former parameter may vary across customers and the latter may vary across

warehouses.)

14. The purpose of this paragraph is to establish the “easy” nature of the deterministic

problem. The paragraph may be skipped without loss of continuity. For ease of exposition, it

is assumed that all warehouses dispatch vehicles simultaneously at times {τk}, and that each

customer is served instantaneously with each dispatch∗. If the cumulative customer demands

as a function of time Dj(t) are known then, conditional on two consecutive warehouse dispatch

times τk−1 and τk, one can calculate customer inventory costs for the intervening interval inde-

pendent of the location of the warehouses.† The best dispatch schedule with a given number of

dispatch intervals, K, and the resulting inventory cost, z∗(K), can then be found with dynamic

programming. Conversely, and quite fortunately, transportation costs depend on the schedule

only through K. To see this, define an indicator decision variable, γ(k)
ij , which is 1 if customer j

is served from warehouse i in period k and 0 otherwise, and let d(k)
j = Dj(τk)−Dj(τk−1) denote

the demand of j in the kth interval. The transportation cost for customer j in this interval is

then: ∑
i

γ
(k)
ij (Aj +Bid

(k)
j xij +B′id

(k)
j xio) for j fixed. (3)

The sum of (3) across all j and k is the total transportation cost. It should now be clear from

the functional form of (3) that for any fixed set of x’s (warehouse locations) and d’s (dispatch

schedules) the total transportation cost is minimized by setting γ(k)
ij = 1 for the warehouse i that

minimizes Bixij + B′ixio. Because these terms are independent of d(k)
j , the optimum allocation

is the same for all dispatch intervals. Therefore, we can replace γ(k)
ij with γij in the formulation.

On recognizing that
∑

k d
(k)
j = Dj(τend) is a constant, we can simplify the expression for the

total transportation cost for all customers across all time periods to read as follows:∑
j

∑
i

γij(KAj +BiDj(τend)xij +B′iDj(τend)xio) (4)

which can be further simplified to:∑
j

∑
i

γij(BiDj(τend)xij +B′iDj(τend)xio) +K
∑
j

Aj (5)

∗These assumptions can be relaxed, but doing this is beyond the scope of this paper.
†Warehouse inventories can be neglected because, given advance knowledge of demand, inbound shipments can

be planned to arrive “just-in-time” for dispatch; this is the “cross-docking” role of warehouses.
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since
∑

i γij = 1 for all j. Since the number of warehouses is a variable, to solve the design

problem we should add to (5) a term representing the fixed costs of opening warehouses at

different locations i. For a fixed K the last term of (5) can be ignored and the remaining part

of the objective function has the standard form of a location-allocation problem with a variable

number of warehouses. This problem is “easy” to solve, and the resulting cost is denoted c∗.

Hence, it is a simple matter to find the minimum of z∗(K) +K
∑

j Aj + c∗ over K, which gives

the complete solution.

15. Uncertainty in customer demands, and the way in which uncertain demand becomes

known as control decisions are made, complicates matters considerably. In addition to the de-

cision variables considered in paragraph 14, one needs to determine appropriate “safety stock”

inventory levels at the warehouses which can be used to absorb demand fluctuations during the

orders’ lead times. The status of the inventory stocks at any given time can also be used to

decide if and how to adjust the basic ordering scheme and warehouse-customer allocations in real

time. Unfortunately, determining optimal or near-optimal ways of doing so remains an unsolved

problem.

16. One simple approach to this problem assumes that the warehouse-customer allocation is

fixed (denoted L), and allows the warehouse stocks to be replenished dynamically by varying the

ordering frequency or the order size in response to changing demand. As suggested in [8] for the

deterministic problem, and shown in Figure 2, one possible system design carves the service region

into influence areas with centrally located warehouses, and all customers within an influence area

are allocated to its warehouse. This method does not utilize “geographic redundancy” in the

form of influence area overlap, and the warehouses can be controlled/operated independently.

Individual warehouse safety stocks provide the buffer against uncertainty. Guidelines for the

design and evaluation of this configuration can be derived easily (e.g., see [7]).

17. A more general but more complicated approach (suggested in Cheung and Powell [3])

would treat customer-warehouse allocations as control variables that depend on the inventory

positions of the warehouses at the time of dispatch. By allowing customer shipments to come

from more than one warehouse in this dynamic fashion, it should be clear that safety stocks can

be reduced at the expense of higher transportation costs. Unfortunately, the formulation in [3]

is unrealistic because the system’s final state is not required to be equal to its initial state, and

thus it ignores important future costs. Because these are hard to quantify, no way has yet been

found of formulating this problem in detail without introducing a (heuristic) “rolling horizon”

fix. This problem will be examined in a different way in Section 3.
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Figure 2: Influence areas with centrally-located warehouses

18. Section 2.1 (paragraphs 10 and 11 in particular) illustrated the difficulties introduced

by randomness, and paragraphs 15 and 16 described the added difficulties introduced when one

wants to design dynamic strategies over long time horizons; i.e. strategies that can be revised

over time as information becomes available. Space considerations preclude us from discussing

more complicated systems, such as many-to-many airline networks with supply uncertainty, but

it should be clear that the same difficulties should arise in those cases; an expanded discussion

of these issues can be found in [9]. The technical nature of the problem and the help that can

be derived from simplified analyses are explained in the next section.

3 Treatment of Uncertainty

3.1 Conventional approach

19. Figure 3 contains a flowchart with the various components of a logistics problem. Decision

variables are classified as being either of a “design” or “control” type. Design variablesDDD, such as

the location and number of warehouses in the problem of Section 2.2, are chosen at the beginning

of the study and have a lasting influence. Control variables UUU , such as the dispatching times

and requested amounts, are chosen dynamically by means of a strategy SSS while the system is

in operation, assuming full information of the system history at each particular decision point.
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Optimization tools such as mathematical programming or stochastic optimal control theory can

be applied to solve the control problem for a given system design.

D esign , � O p era ting  S tra tegy, �

F ixed  C ost
(Predictable)

c f( )�

O peration  C ost
(Long-run Average)

 c o( ) ����< >

Figure 3: Logistics Problem Components

20. When successful, these tools find an algorithm (or strategy) SSS∗(DDD) that identifies the

best possible set of dynamic controls—in the sense that the expected cost of operating the system

with any other strategy SSS, < co(DDD,SSS) >, always exceeds or equals the expected cost of operating

it with SSS∗(DDD). This minimum expected cost is denoted R(DDD) and, by analogy to stochastic

programming, will be called the (design) recourse function.

21. The figure also illustrates that: (i) there are fixed design costs cf (DDD), (ii) the objective of

the problem is to find the best design/control combination, and (iii) this may be achieved with

a two-step process. The inner loop of this process identifies SSS∗(DDD) and R(DDD).

22. If the set of allowable control strategies is very broad and the control problem is solved

optimally, then experience shows that the design recourse function is usually: (i) very difficult

to obtain, and (ii) of an unfavorable form for the outer optimization loop with respect to DDD.

23. In view of this, it makes sense to simplify the control problem by limiting the search to a

carefully chosen subset of all possible control strategies. It is particularly useful if the elements

of this restricted set can be described in terms of numerical parameters PPP because then one can

replace the mapping < co(DDD,SSS) > with an ordinary function, < Co(DDD,PPP ) >. An example of this

parameterization occurs in inventory control theory where the family of so-called (s, S)-reorder

strategies is used as a proxy for all possible strategies‡. Of course, we should make sure that

our subset of possible control strategies includes efficient near-optimal strategies, and that the

function < Co(DDD,PPP ) > is of a favorable form for optimization. Simplifications that achieve these

goals may not be easy to find.
‡(s,S) policies are described by two parameters: the reorder trigger point and the fixed reorder quantity.
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24. Therefore, one may want to simplify the design problem while ensuring that reasonable

forms of redundancy are retained in the formulation. One good method consists in considering

an idealized problem with symmetries that may reduce the number of decision variables in the

combined design/control problem by several orders of magnitude. The idealized problem, which

can be solved exactly, can then be a realistic testbed for design alternatives provided that the

simplifications do not eliminate the phenomena of interest. Choosing a proper idealization is

an art more than a science, but it is critically important. The right simplifications can help us

eliminate from further consideration redundancies that are clearly inappropriate for a given case,

and in this way narrow the scope of the non-idealized design problem to a manageable level. The

next two subsections describe two idealized models that can be used to think about the problems

described in Sections 2.1 and 2.2, and how the insights gained may help define design guidelines

for the non-idealized problem.

3.2 The static VRP with uncertain demand

25. We show here how certain simplifications can be used to investigate designs for the static

VRP with uncertain demand, VRP(UD). Of the three forms of design redundancy discussed in

paragraph 11, we choose to evaluate (i); see Figure 4. Determining the primary delivery zones, A,

is the design problem, and choosing the routes of the secondary vehicles is the control problem.

Construction of the primary vehicle routes is part of the design problem if the customer locations

are known, and part of the control problem otherwise. Here we assume that the locations are

known, but the methodology changes little if they are not. The main issue is selecting the size

of the delivery region A = |A| because this entails a tradeoff between primary and secondary

delivery costs. We show below how a simplified analysis of a continuum model can help generate

a design.

26. In addition to the notation of Section 2.1, let µ be the coefficient of variation of the

(uncertain) customer lot size. If the distribution of lot sizes is one where the central limit

theorem holds approximately (e.g. if there are more than a few stops per tour), then the number

of uncollected items in one zone is the non-negative part of a normal random variable, as in the

well known “newsboy problem”. For our problem, it is not difficult to show that the fraction of

items overflowing, f , only depends on two parameters, α and β, which are:

α2 = µ2/(δA) and β = (V/v)/(δA) (6)
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Figure 4: Primary/Secondary Operating Strategy for VRP(UD)

The first relation is the ratio of the coefficient of variation squared and the number of stops

available in the zone; the second relation is the ratio of the average number of stops the vehicle

can make and those available. The fraction f can be shown to be:

f = αΨ((β − 1)/α) (7)

where Ψ(z) is the integral of the standard normal c.d.f. (cumulative distribution function), Φ,

from −∞ to −z. As shown in Figure 5(a), this function decreases toward zero; it can be expressed

in terms of the standard normal density φ(z) and c.d.f.: Ψ(z) = φ(z)− zΦ(−z). If customer lot

sizes are mutually independent and small relative to the vehicle size, then the overflow fraction f

is also approximately the fraction of customers that remain unserved; therefore, fδ is the density

of customers for the secondary tours. We note that (6) and (7) imply a relation f = F (A) between

the overflow and our decision variable, and that this relation has an inverse A = G(f); see Figure

5(b). Therefore, we can use f instead of A as the decision variable in the manipulations below.

27. If we imagine that the secondary stops are uniformly distributed, rather than clustered

around corners of overflowing delivery regions (see Figure 4), we can write an expression for the

total distance traveled per unit area for both the primary and secondary tours, using equation

(1). (Consideration shows that the effect of clustering is so minor that it can be ignored in this

type of analysis.) We may also want to add a level-of-service penalty k for every customer served
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with a secondary tour; i.e., a term of the form kfδ for every unit area. The resulting distance

per unit area is:

2r/G(f) + 2r(δ/C)f + 0.57δ1/2[(1− f)1/2 + f1/2] + kfδ (8)

The first two terms represent the line-haul distance traveled by primary and secondary vehicles,

and the third term the combined local delivery distance. The four components of (8) are plotted

on Figure 5(c). As one may expect intuitively, the main trade-off occurs between the primary

Ψ( )�

�

1.0

1.00-1 .0 2 .0 3.0

(a )

�

�

(b)

1.0

� �( )

Cost 
Per Unit
A rea

1.0

�

0
(c)

line-haul p rim
ary

line-haul secondary

pena lty

loca l

TOTA L

� �( )

Figure 5: Analysis of the VRP(UD): (a) Ψ(x), (b) F (A) and G(f), (c) Cost Per Unit Area as
Function of f

and secondary line-haul costs. Examination of (8) reveals at a glance how the optimum value

of f (and therefore A) depends on the parameters of the problem. For example, we see clearly
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that as r increases the last 3 components of (8) become relatively smaller, and therefore that

the optimum f increases as we move away from the depot. Thus, we may want to use smaller

primary zones near the depot.

28. One can also explore how the solution to our problem depends on δ, v, µ, etc., if these

parameters change geographically. Then the optimum solution of (8) for suitable values of the

parameters would indicate the desirable zone size that should be used in various geographical

subregions of the service region. This information could then be used to generate a design, e.g.,

as done by Clarens and Hurdle [4] for a related problem and further discussed in [7].

29. Given this design, each primary vehicle follows the TSP tour constructed between the de-

pot and the customers in its zone, returning to the depot when its capacity is reached and possibly

leaving some customers unserved. The control problem is then to determine secondary vehicle

tours through these skipped customers, and this is an ordinary deterministic VRP. Thus, the

proposed methodology leads to practicable solutions of the combined design/control VRP(UD)

problem. Analysis shows that these solutions are more efficient than those requiring sweeper

tours to serve customers within a single zone, even if the latter problem can be configured closer

to optimality (e.g. as proposed in Gendreau et al. ([11]).

30. The modeling approach of paragraphs 26 and 27 is quite useful. It has been proposed

for the inventory-routing problem with uncertain demands [7] and can also be applied to other

possible strategies for the VRP(UD); e.g., those that allow for overlapping delivery zones and

for tours that do not return immediately to the depot as in strategy (iii) of paragraph 11.

We are currently investigating these strategies and plan to conduct numerical tests to evaluate

performance.

3.3 The warehouse-location-inventory-routing problem with uncertain demand,
WLIRP(UD)

31. The complications introduced by uncertain demands in the WLIRP were mentioned in

paragraphs 15-17. They are foreboding due to the multi-stage nature of the problem. As a

result, no “exact” algorithm has been found for this problem, even for drastically simplified

versions of it.

32. To reduce these difficulties to a manageable level while retaining sufficient flexibility to

reduce safety stocks, we propose partitioning the set of warehouses into fixed subsets of size n

to which customers are statically allocated. Warehouse subsets would “share” a safety stock
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chosen to ensure that customer demand is met with very high probability. To prevent stockouts

at individual warehouses, customers would be dynamically allocated within their subset in a

transportation-efficient way. We would expect the reduction in safety stock to increase with

n, but to be bounded from above, and the transportation costs also to increase with n albeit

in a different way. We do not know the precise form of the latter relation but believe that it

increases rather rapidly with n (see paragraph 38), and that there is a small n = n∗ which

optimally balances the inventory savings with the transportation penalty. As an illustration of

the modeling approach, we examine below the costs for the special case with n = 2 in some

detail. (It is shown that with n = 2 the benefits of dynamic allocation almost always outweigh

the drawbacks; i.e. that n∗ ≥ 2 in most cases.) Results for large n are also given without a

derivation. They suggest that n∗ should not be large.

warehouse warehouse

0 L�

�

Figure 6: Idealized System for WLIRP(UD) with n = 2

33. We consider now the simplest possible example (Figure 6) which exhibits the aforemen-

tioned issues. It includes two warehouses centered on opposite sides of a rectangular service

region, with base length L distance units. Travel on this region is permitted vertically and hor-

izontally (L1 metric)§. The demand in a vertical slice of the region ranging from abscissa x to

x + ` during time t, t + τ is given by D(x, x + `, t, t + τ). Changing unpredictably with time,

this demand is assumed to be a stationary process in x and t, with independent increments;

accordingly, D′`τ will denote the expectation of D(x, x+`, t, t+τ) and γD′`τ its variance, where

γ is the process’ index of dispersion. Assume that warehouses serve customers instantaneously

(the latter do not carry a safety stock) and order from the factory regularly an amount equal
§Note that the shortest paths from either warehouse to a given customer require the same vertical distance,

hence only horizontal distances are considered in this discussion
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to that depleted since the previous order (periodic review system). Units of time are chosen so

that the time between warehouse reorders is 1 and this unit is referred to as a “day.” Finally,

the “lead time” between a warehouse order and the arrival of goods equals T reorder times.

34. Two cases will be compared: (a) Static allocation: customers with x < L/2 are allocated

to the warehouse at x = 0 and the others to the one at x = L; and the safety stock at each

warehouse is chosen to be three standard deviations of its total customer demand during one lead

time, 3(γD′(L/2)T )1/2 , so as to ensure that the probability of a stockout is low. (b) Dynamic

allocation: customers are dynamically assigned to a warehouse each period; and the combined

safety stock is chosen to be three standard deviations of the lead-time demand in the complete

service region, 3(γD′LT )1/2. The dynamic allocation method is described in more detail below;

it ensures that a customer goes unserved only if both warehouses are empty, and achieves this

goal with the least possible item-Kms of travel between the warehouses and the customers.

35. Static allocation evaluation. The total system safety stock for this strategy is:

(18γD′LT )1/2 (9)

and the average item-Kms of travel in any given day are:

D′L2/4 (10)

36. Dynamic allocation evaluation. The total system safety stock is only:

(9γD′LT )1/2 (11)

If the inventory positions at the two warehouses at the beginning of a “day” are I1 and I2, and the

cumulative demand for the “day” as a function of position d(x) is also known, e.g. as shown by

the curve in Figure 7, then the best allocation can be obtained graphically as depicted.¶ We look

for a point x∗ that defines the influence areas for the day. Note that the item-Kms of travel are

given by the shaded areas of the figure. If the demand can be satisfied, i.e. d(L) < I1 +I2, we first

find x1, x2 such that d(x1) = I1, d(L) − d(x2) = I2, and then choose x∗ = middle(x1, x2, L/2),

as shown in Figure 7. If the demand is not satisfied, which is rare, then customers in (0, x1)

are served from 0, customers in (x2, L) from L and those in (x1, x2) are lost. If we assume for

the purpose of calculating the item-Kms that inventories are at their average positions at the
¶In many cases d(x) may not be known sufficiently in advance for us to be able to achieve the best allocation;

thus, our derivations are somewhat tilted in favor of this strategy.
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beginning of the day, I1 = I2 = D′L/2 + 1
2(9γD′LT )1/2, which also tilts the calculations slightly

in favor of this strategy, then an approximate formula for the shaded area is (see appendix):

D′L2/4 + (L/100)(γD′L)1/2 (12)

d(L)

I2

I1

�� ��� ��

0 L

�

L/2

d( )�

# of Item s

Figure 7: Dynamic warehouse allocation

37. We see from (9) and (11) that the dynamic strategy saves

1.24T 1/2(γD′L)1/2 (13)

items in inventory, but also see from (10) and (12) that it induces approximately

(L/100)(γD′L)1/2 (14)

extra item-Kms of travel every “day”. From the ratio of these quantities we see that for every

truckload-“day” of inventory saved by the dynamics, a truck has to be driven (L/124)/T 1/2

Kms. A truckload of inventory for many goods such as automobiles costs on the order of $30

per day, and also $30 per “day” if we assume that 1 “day” = 1 day. (This number can be much

higher for certain goods, such as jewelry, computer equipment, etc., but such goods may not be

transported as described here.) Driving a truck costs on the order of $1 per Km. Therefore,

dynamic allocation will be attractive if (L/T 1/2) < 3720 Km. This should be the case even if

T = 1 and the goods are much cheaper.

38. Asymptotic results for large n: We present here generalizations of (13) and (14) that

include n as a parameter without a detailed derivation. The results show that n∗ should not be

large. First note that the rationale that led to (11) and (13) now yields (1−(1/n)1/2)(9γD′LT )1/2
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for the inventory savings per terminal for large values of n, where L is the separation between

terminals. The dynamic transportation costs can also be approximated analytically if the ware-

house subsets are arranged one-dimensionally, and one uses a simple “greedy” allocation strategy.

(Considered sequentially, e.g. from left to right, each warehouse would serve, starting with the

last customer served by the previous warehouse, as many customers as it inventory position would

allow without encroaching on the territory of the warehouse that follows.) This strategy is sub-

optimal but easy to analyze. It is mathematically analogous to a Brownian queuing problem for

which formulas exist. We find that the extra transportation cost per terminal increases linearly

with n1/2 for any given γ, D′, L and T , according to the asymptotic formula: kn1/2(γD′L3/T )1/2

where k is a dimensionless coefficient which is k = 1/6 if the inventory positions are equal and

k = 1/3 if they are random. An optimal strategy would treat customers on both sides symmet-

rically, and this would reduce k by more than a factor of 2. We believe that for an optimum

strategy k would be somewhere between 1/10 and 1/25. The extra distance formula is more

difficult to derive for other (non-one-dimensional) warehouse groupings but its rapid increase

with n, and other qualitative behavior should not change much.

36. The results in paragraph 35 suggest that the optimum n∗ is small and that it can be

found with the help of simple idealized models. In order to design a system one would have to

minimize an approximate “logistic cost function” in which the warehouse influence area diameter

(L) and the size of the dynamic subset (n) would appear as decision variables. The dynamic

allocation algorithm (control problem) would be relatively easy to solve since it decomposes by

warehouse subset and n is small. A discussion of this issue, however, is beyond the scope of this

paper.

4 Conclusion

37. As the examples in this paper have illustrated, uncertainty usually requires that redundancies

be introduced into a system design. The design game is to determine which kinds of redundancies

offer the most benefit for the least cost. If this is difficult to do with detailed models (which is

usually the case) an approximate analysis with idealized models may yield the desired insights.

Idealized models allow many more forms of redundancy to be evaluated without the ad hoc

assumptions of detailed models, which are often limiting and hard to understand. Idealized

models can identify efficient strategies that are simple enough to be implemented; i.e. strategies
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that allow detailed designs for the original, non-idealized problem to be developed and the control

subproblem to be solved, as occurred in the examples of this paper.

38. If prediction accuracy is important one can simulate the chosen design/control configu-

ration (and perturbations to it) to obtain accurate cost estimates; these can be compared with

the idealized predictions. In this respect, the most useful optimization methods would seem to

be case-specific “meta-heuristics” that would allow us to sort through these perturbations while

retaining the flavor of the basic design.

39. If closed form solutions can be developed, the expressions reveal at a glance how the

solution depends on the input data. This is useful when proposals have to be made to manage-

ment. For example, the analytic solution may indicate which data influence costs and which are

irrelevant. The former may even suggest alternative problems that management should consider.

40. In closing, we recognize that the methodology proposed in this paper is more an art than

a science but also note that once mastered it can be effectively applied quite broadly. We believe

that the results of the approach can be very fruitful and hope that this paper will stimulate

others to pursue similar avenues of thought in the future.
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Appendix

A1. Since stockouts are rare, we evaluate the item-Kms only for the case where x2 < x1. Three
possibilities exist: (a) x1 < L/2; (b) x2 > L/2; (c) x2 < L/2 < x1. The average item-Kms
traveled in case (c) will be D′L/4, and the average item-Kms for cases (a) and (b) will be larger.
Insofar as I1 = I2 = I, the latter two averages should be equal to each other, by symmetry.
Thus, the derivations below focus on case (a).

A2. Consider d(x) now as a stochastic process. We know from the first passage time for-
mulas for processes with independent, positive increments that x1 is approximately normal with
E[x1] = I/D′ and var(x1) = (I/D′)(γ/D′). We also know from symmetry considerations that
the expectation of the shaded area conditional on x1, A(x1), is equal to the area of the two right
triangles in Figure 8. (To see this note that for every realization of the process d(x) we can define
a dual realization d′(x) by setting: d′(x) = I−d(x1−x) if x < x1, and d′(x) = I+d(L)−d(L−x)
if x > x1. Our statement is true because dual pairs of realizations partition the sample space
and because every dual pair has the same combined area: twice the shaded area.) Therefore,

A(x1) =
1
2

[Ix1 +D′(L− x1)2] (A1)

If we let ε = L/2 − x1 and assume ε ¿ L (not many extra miles) the above expression can be
simplified:

A(ε) =
1
2

[I(L/2− ε) +D′(L/2 + ε)2] = D′L2/8 + IL/4 + (D′L− I)ε/2 +D′ε2/2
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≈ D′L2/4 + (I −D′L/2)L/4 + (D′L− I)ε/2

Thus, the expected added miles due to x1 < L/2 are:

(I −D′L/2)(L/4)p(ε) +
1
2

(D′L− I)E[max(0, ε)] (A2)

where p(ε) = Pr{ε > 0} = Pr{d(L/2) > I} = Φ([D′L/2 − I]/(γD′L/2)1/2). Recall that
[I − D′L/2] is the safety stock at x = 0 which is 1

2(9γD′LT )1/2 as per (11). Thus, p(ε) =
Φ(−(9T/2)1/2) , which is on the order of 0.01 or less, and the first term of (A2) becomes:

1
2

(9γD′LT )1/2(L/4)Φ(−(9T/2)1/2)

d(L)

I

I
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Figure 8: Calculation of Expected Item-Kms of Travel

If we use I ≈ D′L/2 as an approximation in the expression for the variance of ε, the ex-
pectation of max(0, ε) reduces to: (γL/2D′)1/2Ψ((9T/2)1/2), where Ψ is the previously defined
integral of the standard normal c.d.f. Thus, the second term is:

1
2

(D′L/2− 1
2

(9γD′LT )1/2)(γL/2D′)1/2Ψ((9T/2)1/2)

and the total miles added become:

1
2

(9γD′LT )1/2(L/4)Φ(−(9T/2)1/2) + (L/4)((γD′L/2)1/2 − γ(9T/2)1/2)Ψ((9T/2)1/2)

Letting α = (γD′L/2)1/2, β = L/4, and f(T ) = (9T/2)1/2, this expression simplifies to:

αβφ(f(T ))− γβf(T )Ψ(f(T ))

When T is close to 1, this expression is closely approximated by:

≈ (L/100)(γD′L)1/2 (A3)

as claimed in the text.


