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 Abstract

This paper describes a simple approach for modifying an input-output (or
queueing) diagram to measure the time and distance spent by vehicles in a queue in
a much simpler and self-serving manner than using a time-space diagram.  The
graphical technique requires construction of a curve depicting the cumulative
number of vehicles to have reached the back of the queue as a function of time, but
as shown herein, the technique can be easily automated with a spreadsheet.
Application of the technique is shown for the simple case of a constant departure
rate from a bottleneck, and for the slightly more general case of a bottleneck
capacity which changes once, which is demonstrated to be applicable to the study
of an undersaturated traffic signal.  In the course of describing the usefulness of
this technique for estimating several measures, including the maximum length of a
physical queue and the time at which this maximum occurs, the paper clarifies the
difference between “delay” at a bottleneck and the “time spent in queue,” which
appear to have been confused in some of the literature.
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INTRODUCTION

This paper describes a simple approach by which an input-output (or queueing) diagram is
modified to show the time and distance individual (and aggregated) vehicles spend in
queue upstream of a bottleneck.  The technique involves the construction of a curve
showing the time that each vehicle reached the back of the queue; or its analogue, the
cumulative number of vehicles to have reached the back of the queue by time t.  This
construction permits many measures to be read directly from the input-output diagram, in
a much simpler way than using the more conventional time-space diagram, which can be
quite laborious to construct.  While not the first example of these different diagrams being
used in a consistent manner (see, e.g., (1,2)), this paper demonstrates the usefulness of our
approach, and addresses the confusion in some of the literature surrounding the distinct
concepts of “delay” and “time in queue.”

Delay represents the difference between the time a vehicle actually took to traverse a
given distance and the time it would have taken if it were unobstructed.  Delay is an
appropriate measure to use when studying the impacts of congestion on people’s time.
When evaluating instead the energy and emissions implications of alternatives, for
example, the more appropriate quantity to evaluate is the amount of time actually spent in
queue (3) (“waiting time” or “time in queue”), which is greater than the delay.  This
relationship should be intuitive, because vehicles traveling at free-flow speed would
naturally reach the location of the back of the queue (which has physical length) before
they would have reached the bottleneck without obstruction.  The paper will show that,
under certain circumstances, the time a vehicle actually spends in queue is a constant
multiple of its delay, and that this constant is independent of the arrival pattern of vehicles
to the bottleneck.

This paper begins by examining the case of a bottleneck with constant capacity.  The
more conventional (time-space diagram) approach is described before the proposed
graphical approach is demonstrated, in order to show the consistency of the two
techniques.  Numerical expressions applicable to the proposed approach are developed,
along with procedures to automate calculations on a spreadsheet.  The paper then extends
the technique to the slightly more general case of a bottleneck capacity which changes
once at a known time.  The graphical approach is described, as are the corresponding
numerical expressions, along with a detailed interpretation of the results.  The technique is
next demonstrated with a very familiar scenario, the undersaturated traffic signal.  Finally,
the benefits and limitations of the technique are discussed in the conclusions.

CONSTANT DEPARTURE RATE

We first consider the simplest case of a bottleneck with a constant maximum departure
rate µ, using both a more conventional (time-space diagram) approach, and the proposed
(input-output diagram) approach.  In both instances, we assume that a constant free-flow
speed vf holds for all uncongested traffic (independent of flow), and that whenever
congestion occurs upstream of the bottleneck, vehicles traverse the queue at some
constant speed vµ (dependent on the bottleneck flow), which is less than the free-flow
speed.  We also assume, for sake of simplicity, that speed changes occur instantaneously.
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(Any real difference from this is of little significance and would detract from the
discussion.)  Finally, we assume that vehicles neither enter nor leave the traffic stream
while in the queue (which averts the need for a much more complex treatment (4,5)).

Conventional (Time-Space Diagram) Approach

The conventional approach for determining the time and distance in queue uses a time-
space (t-x) diagram to examine vehicle trajectories.  Although we classify it as
“conventional,” this correct approach is not used universally in the literature, but is widely
recognized.  Our impetus for suggesting an alternate approach is that this conventional
approach is very tedious, and has been misinterpreted in some of the literature.

The time-space diagram of Figure 1a represents the trajectories of vehicles
approaching, queueing upstream of, and departing from, a bottleneck with capacity µ and
speed vµ in queue.  The trajectories of vehicles in queue are nearly evenly spaced, and as
such, can easily be constructed.  Trajectories of vehicles at free-flow speed vf are not
evenly spaced in this example, indicating that the approaching traffic arrives with variable
headways.  The dashed line between the upstream free-flow state and the queued state
represents the location of the back of the queue as a function of t.

At every point along the back-of-queue trajectory, its slope is equal to the
instantaneous speed at which the location of the back of the queue is moving along the
roadway.  This speed, vI, is related to ∆q and ∆k, the changes in flow and density across
the interface (i.e., from free-flow state to queued state), by the well known relation

v I
q
k= ∆

∆ .  (This relation is the basis of the kinematic wave theory of traffic flow (6,7).)
According to this theory, the back of the queue trajectory can be constructed by piecing
together small segments of the correct slope.  Alternatively, since in this case the passage
time of each vehicle through the bottleneck is known, the back-of-queue trajectory can be
constructed as the locus of the intersections of the queued and free-flow trajectories of
each vehicle.  (This was the approach used in the construction of Figure 1a.)  Both
procedures are methodologically equivalent and also quite laborious.  From a time-space
diagram such as Figure 1a, all relevant measures can be measured directly.

For example, to calculate the total time spent in queue by all vehicles, TQ, one would
measure the area represented by the queued state, which in Figure 1a is the area enclosed
by the dashed line, and multiply by the density.  To calculate the total distance traveled in
queue by all vehicles, DQ, one would multiply this same area by the flow, µ.  This
approach is tedious, however, because it involves the construction of the t-x diagram.

Proposed Approach

Consider now the trajectory of vehicle N (shown in bold in Figure 1a), which must queue
before reaching the bottleneck.  Since the bold dashed line represents the vehicle’s
“desired” or free-flow trajectory (once it reaches the back of the queue), the horizontal
separation at the bottleneck between this desired trajectory and the actual trajectory
represents, by definition, the delay, and is denoted w.  For clarity, the time-space diagram
of Figure 1b replots only the actual and desired trajectories of vehicle N, from the time and
place at which the vehicle reaches the back of the queue (point BOQ), beyond the time
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and place it reaches the bottleneck.  The vehicle’s actual trajectory within the queue has a
speed (i.e., slope) of vµ as shown, whereas the desired trajectory’s speed is vf.  The delay
w, the time spent in queue tQ (> w) and the distance traveled in queue dQ are clearly shown
on the figure, and the relationship among these three variables is discussed below.

From the geometry of Figure 1b, it is clear that w varies with dQ as follows:

w
v v

d
f

Q= −










1 1

µ
, (1)

and thus

d
w

Q
v v f

=
−1 1

µ

. (2)

Therefore, the distance traveled in queue by a particular vehicle only depends on the
arrival pattern of vehicles as it affects the vehicle’s delay.  Because the speeds are fixed for
a given facility discharging at a given capacity µ, the distance traveled in queue is a fixed

multiple of the delay w.  Since tQ = 
d

v
Q

µ
, the time spent in queue is

t
w

Q v

v f

=
−1 µ

, (3)

which is again a fixed multiple of w.

Because of this relationship between tQ  and w for an individual vehicle, the total time
spent in queue by all vehicles, TQ, will be equal to the total delay W (computed by
summing all of the individual vehicle delays) multiplied by that same constant multiple,
i.e.:

T
W

Q v

v f

=
−1 µ

. (4)

Likewise, the total distance traveled by all vehicles in queue, DQ, is

D T v
W

Q Q
v v f

= ⋅ =
−µ

µ

1 1 . (5)

What is appealing about Equations 2, 3, 4 and 5 is that dQ, tQ, TQ and DQ have been
related to the qualities w and W that can be estimated without the laborious t-x
construction.  The standard approach for estimating w and W is to use a typical input-
output diagram (Figure 2; see, e.g., (8)), as described below.

The proposed approach first requires the construction of a typical input-output
diagram.  First, the arrival time of each vehicle at an upstream observation point is
measured, and plotted on the figure as the curve A(t).  Then, by translating the arrival time
of each vehicle horizontally to the right by the free-flow travel time to the bottleneck, tf,
the desired (or “virtual”) arrival time of each vehicle at the bottleneck can be plotted as the
curve V(t).  Finally, the departure curve D(t), defining the time that each vehicle departed
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the bottleneck, can then be constructed in the usual way to serve the virtual arrivals at a
maximum rate µ.  For a given vehicle number n, the horizontal separation between V(t)
and D(t) represents the delay for that vehicle, and is denoted wn.

Using the relationship in Equation 3, the input-output diagram of Figure 2 can be
modified to include a curve B(t), the number of vehicles to reach the back of the queue by
time t, or equivalently the times that each vehicle reached the back of the queue (see
Figure 3).  We can determine the time that each vehicle joined the back of the queue by
“extending” the delay of each vehicle, wn, to the left by the factor in Equation 3.  The
locus of these points for all vehicles represents the “back of queue” curve, B(t), which can
now be constructed on the input-output diagram (Figure 3).  Obviously, B(t) will differ
from V(t) only for those vehicles for which V(t) differs from D(t); i.e., whenever a queue is
present.

In addition to showing the tQ for individual vehicles, the B(t) curve in this “modified”
input-output diagram conveniently displays many other measures.  Figure 3 shows the
number of vehicles in queue at time t as the vertical separation between the B(t) and D(t)
curves.  It must be remembered that the vertical separation between V(t) and D(t)
represents the vehicles in an imaginary (point) queue where the only vehicles included are
those for which their desired free-flow departure time from the bottleneck has expired.
Obviously physical queues of traffic upstream of a bottleneck contain both this set of
vehicles and a set of vehicles for which their desired free-flow departure time from the
bottleneck has not yet expired, but will do so before they clear the bottleneck.

It should be obvious that the vehicle which joins the queue at its maximum length will
experience the longest time in queue (and hence the greatest delay).  Because the queue
length is the vertical separation between B(t) and D(t), and the time in queue is the
horizontal separation between B(t) and D(t), these two maximum values, Qmax and tQ

max,

are related algebraically as Qmax = µ tQ
max , as shown in Figure 3.  The maximum queue

length, Qmax, has units of vehicles; this can be converted to a physical distance as follows:

d
Q v

t vQ Q
max

max
max=

⋅
= ⋅

µ
µµ

. (6)

Note from the figure that if we translate D(t) vertically until it is tangent to B(t) we obtain
the time when the maximum queue occurs.

The total time spent by all vehicles in queue, TQ, is the sum of each individual vehicle’s
tQ, and therefore is represented graphically as the area between the curves B(t) and D(t)
(just as the total delay of all vehicles is the area between the V(t) and D(t) curves).  The
total distance traveled in queue by all vehicles, DQ, is therefore the product of this area and
vµ.  Alternately, if the horizontal axis of Figure 3 is rescaled (i.e., multiplied by vµ), the
area between the B(t) and D(t) curves can directly display the total distance traveled by all
vehicles in queue, as shown by the second horizontal axis.

The proposed approach is simple enough that it can easily be incorporated into a
spreadsheet.  All of the measures displayed by the modified input-output diagram (Figure
3) can be generated automatically if one is given the arrival time An of each vehicle n at the
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upstream observer, the bottleneck capacity µ, the speeds vf and vµ, and the free-flow travel
time to the bottleneck tf, as described below.  (Automation of the proposed approach will
be most useful when individual vehicle arrival times are known.  When individual arrival
times are estimated from aggregate data, one can approximate the An by interpolation.)

For each vehicle n, the virtual arrival time at the bottleneck Vn can be calculated as
Vn = An + tf, where tf is the free-flow trip time from the observation point to the bottle-
neck.  The departure time Dn of each vehicle (with the exception of the first, which we
assume proceeds with no delay, so D1 = V1) can be calculated as Dn = max(Vn, Dn–1 + 1

µ ),

yielding a vehicle’s delay as wn = Dn – Vn.  Given the delay of each vehicle wn, the tQ and
dQ are given by Equations 3 and 2 respectively.  TQ and DQ can then be calculated by
summing across individual vehicles.  The maximum physical queue length is simply the
maximum distance traveled by a vehicle; the time at which this maximum queue occurs is
the time that vehicle reached the back of the queue.  Finally, the number of vehicles in
queue at time t can be determined discretely as the product of every vehicle’s distance in

queue, dQ,n, and the density of vehicles in queue, kµ = 
µ
µv .

DEPARTURE RATE WHICH CHANGES ONCE

We believe that the approach described in the previous section can be extended to time-
dependent bottlenecks.  This is a difficult problem that can only be solved easily (without
the t-x diagram) in the special case where the relationship (the fundamental diagram)
between µ (or q) and kµ on the homogeneous section upstream of the bottleneck is
triangular (as in Figure 4), and with some additional difficulty if it is concave (4).  While
the general case of time-dependent bottleneck capacities under concave q-k relationships is
still being investigated, this section will show how the proposed approach can be extended
to the special case where the departure rate changes once at a known time and where the
q-k relationship is triangular.

By dealing with a single change in bottleneck capacity, certain thorny problems are
avoided, and the solution can be described relatively easily.  However, a change in the
bottleneck capacity implies that the departure rate that will be in place at the bottleneck
when a particular vehicle departs is not necessarily known when that vehicle enters the
queue.  This introduces the added complication that the trip time of a vehicle is not readily
known, since its velocity might change from one queued state to the other.

The triangular q-k relationship has been supported by empirical evidence (9,10,11),
and is a reasonable first approximation.  (The triangular relationship can be defined by
means of only three simple quantities: the free-flow speed vf, the maximum flow qmax and
the jam density kj.)

This section proceeds by first demonstrating the graphical procedure for this specific
case.  It then continues by describing the limiting cases of the proposed technique.  Finally,
the diagram produced by the graphical procedure is interpreted.
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Diagram Construction

Suppose that the bottleneck can discharge at a maximum rate µ1 until time tJ, and at a
maximum rate µ2 thereafter, as shown by the piece-wise linear departure curve, D(t), in
Figure 5.  This curve can be constructed in the usual way from any given “virtual” arrival
curve, V(t), such as the one shown in the figure.  To construct the B(t) curve, we must
recognize that there exist three “types” of vehicles, which are distinguished by the
characteristics of the queue when the vehicle joins it, and by the bottleneck departure rate
when the vehicle passes the bottleneck.

The first group of vehicles enter the queue and clear the bottleneck before the
bottleneck changes capacity, and are therefore unaware that the bottleneck capacity will
eventually change.  This group is shown on Figure 5 as vehicles nL to nJ; these vehicles
experience only queued state 1 and can be treated as in the previous section describing the
constant departure rate case.

The second group of vehicles are those which experience both states within the queue;
this group is shown in Figure 5 as vehicles nJ+1 to nK.  These vehicles join the queue at a
time before the “information” about the change in the bottleneck departure rate has had
time to reach the back of the queue.  Thus, they join the queue in state 1 but leave in state
2.  These vehicles must join the queue at the same time they would have joined it had the
departure rate not changed.  Therefore, to construct the back of queue curve for these
vehicles, it is simplest to “imagine” that the discharge rate never changes, and to continue
the procedure for the type 1 vehicles using an extrapolated departure curve, D1′(t).
Before describing how the last vehicle in this group, nK, is identified it is convenient to
study the third group of vehicles.

These vehiclesshown in Figure 5 as vehicles nK+1 to nM queue only in state 2.
Because the entire time in queue is spent in state 2, there is no longer any evidence that
vehicles ever departed at µ1.  Therefore, only D2(t), µ2 and v2 influence B(t), and this curve
can be constructed from these data as explained in the previous section describing the
constant departure rate case.

In summary, two component curves B1(t) and B2(t) should be constructed from the
relevant departure curves D1(t) and D2(t).  Starting from the “outer” points (L and M in
Figure 5) the curves are constructed “inwards” (i.e., B1(t) to the right and B2(t) to the
left).  If the component back of queue curves B1(t) and B2(t) intersect at only one point
(the usual case), then this point identifies the last vehicle to travel in both queued states
(i.e., vehicle nK in Figure 5), and our recipe is completed.  The segment of B1(t) to the left
of this intersection point combined with the segment of B2(t) to the right of this point yield
the desired curve, B(t).

If the curves intersect at multiple points, then the relevant point can be identified from
the slope of the line JK, which is the rate at which the “information” wave crosses vehicles
within the queue, µI.  For the triangular relation of Figure 4 this rate is constant and
known to be qmax / (1−qmax/kjvf) (4).
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Limiting Cases

The proposed technique breaks down for µ = 0 or µ = qmax because the ratio in Equation 3
is not defined in these cases.  Thus, alternate procedures must be developed for these
cases; e.g., by examining the limiting behavior of the method as the capacity of the
bottleneck moves arbitrarily close to zero or qmax.  This will be accomplished by relating
B(t) to V(t), instead of relating it to D(t), as explained below.

First note from Equation 3 that the additional time that a vehicle N spends in queue,
∆N (≡ tQ,N − wN), is related to the delay, wN, by:

∆ N N
f

w
v

v v
=

−











µ

µ
. (7)

This quantity, which represents the horizontal separation between V(t) and B(t) for vehicle
N, turns out to be well-defined for µ→0 and µ→qmax.  For very small µ (i.e., very small vµ)

Equation 7 reduces to ∆ N N
v

vw
f

≈ µ .  Additionally, since for very small vµ, wN
N

v k j
≈

µ
, we

find:

∆ N
f j

N

v k
≈ ,     for µ→0. (8)

From Equation 7, it is also clear that, as µ→qmax (i.e., vµ→vf), ∆N becomes extremely
large, and therefore the back of queue curve must approach a horizontal line.  The next
section will demonstrate that these limiting procedures are applicable to an undersaturated
traffic signal, where the capacities during the red and green phases, µR and µG, are 0 and
qmax, respectively.

Interpretation of the Diagram

The straight line JK in Figure 5 indicates the time when the “information” concerning the
change in capacity at the bottleneck reaches vehicles, and therefore identifies the time that
each of these vehicles changes from queued state 1 to queued state 2.  (Analogously, JK
represents the cumulative number of vehicles to have changed state as a function of time,
which is exactly the flow of vehicles that would be seen by a moving observer traveling
backwards with this “information” wave.)  Line JK must have a constant slope, because,
from the time the bottleneck capacity changes, this information travels backwards towards
the end of the queue at a constant velocity, and vehicles in queue are assumed to be evenly
spaced.  Because this line distinguishes travel in the two queued states, it conveniently
permits a graphical interpretation of the total time spent by all vehicles in each state:  the
area between the curves B(t) and D1(t) to the left of line JK (area JKL) represents the total
time spent in state 1, and the area between the curves B(t) and D2(t) to the right of the line
(area JKM) represents the total time spent in state 2.  The total distance traveled by all
vehicles in each of the queued states is simply the product of the total time spent in the
queued state and the speed in that queued state.

As for the constant capacity case, the total distance traveled in each queued state can
also be interpreted graphically.  For clarity, the modified input-output diagram of Figure 5
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is redrawn as Figure 6, and includes two additional “distance” axes, which have been
rescaled from the time axis by the two queued speeds, v1 and v2, respectively.  The total
distances traveled in queued states 1 and 2 are the areas JKL and JKM, respectively,
where distance axis 1 is used for JKL and axis 2 for JKM.

The distance traveled in queue by a vehicle which travels in a single queued state can
be read directly by using the appropriate axis.  For vehicles traveling in both queued states,
distances in state 2 increase linearly with vehicle number.  As a result, it is possible to
introduce an auxiliary straight line, D*(t), that will allow us to read the combined distance
from distance axis 1 as the horizontal separation between B(t) and D*(t).  As shown in the

figure, the horizontal separation of this line from line JK must be 
v
v

2

1
 times larger than the

horizontal separation between JK and JM.

The time and distance in queue of individual vehicles which travel in both queued
states can also be obtained numerically by considering the trajectory of a single vehicle N
in Figure 5.  It can be shown that the time that vehicle N spends in state 2, tN,2, can be
expressed numerically as:

( )t N nN
I

J,2
2

1 1
= −









 −

µ µ
. (9)

The time vehicle N spends in queued state 1 can be found by substituting that vehicle’s
delay in queued state 1, wN,1, into Equation 3, where wN,1 can be calculated as follows:

w w t
v

vN N N
f

, ,1 2
21= − −









. (10)

Given the times in each queued state, the distances traveled by a vehicle can be calculated
by multiplying these times by their appropriate queued speed.

As in the single capacity case, Figure 5 shows the number of vehicles in queue at
time t as the vertical separation between the B(t) and D(t) curves.  It should be noted that,
although the maximum physical queue length can still be determined as the maximum
distance that any vehicle spends in queue, this value cannot necessarily be determined
using Equation 6, because some vehicles travel two different speeds in queue.

Again, the simplicity of the proposed approach in this more general case allows the
technique to be automated in a spreadsheet.  Once the vehicles represented by points J and
K in Figure 5 are identified, the appropriate equations can be used to provide the time and
distance that each vehicle spends in each of the queued states.  Many of the other
measures can then be generated as described in the previous section.

UNDERSATURATED TRAFFIC SIGNAL EXAMPLE

The behavior of traffic upstream of an undersaturated traffic signal (i.e., where the queue
clears during the green phase) with a constant arrival rate, λ, is now examined with the
proposed procedure.  This particular case is examined because it is a well-known problem
which will allow us to compare the results of the proposed procedure with the
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conventional ones.  Consider once again the q-k relationship of Figure 4.  In the case of an
undersaturated traffic signal placed on a homogeneous road, the capacities during the red
and green phases, µR and µG, are µR = 0 and µG = qmax.  The corresponding speeds, vR and
vG, are vR = 0 and vG = vf.

The conventional time-space diagram for this problem is given in Figure 7.  Since
vR = 0 and vG = vf, we see from the figure that the delay to a vehicle is its time in state 1.

The proposed approach yields the component curves, B1(t) and B2(t), of Figure 8.  As
explained in connection with the limiting cases for µ = 0 and µ = qmax, curve B2(t) is
horizontal and curve B1(t) diverges from V(t) at a constant rate (Equation 8) with
increasing vehicle number.  Recall, as well, that the straight line JK in Figure 8 represents
the time at which a vehicle would change from the first to the second queued state.

Careful inspection of both the time-space and input-output diagrams reveals that they
are perfectly consistent (although Figure 8 is easier to construct and interpret, especially in
a case where the arrival rate would depend on time).  For example, vehicle nK has zero
delay but travels the greatest distance in queue;  the time at which vehicle nK reaches the
back of the queue, tK, is thus the time when the queue has its greatest physical length.  (It
is interesting to note that the maximum physical queue length is longer than would be
predicted assuming “point” queueing, and the time at which this maximum occurs is later
than would have been predicted with point queues, tJ.)

CONCLUSIONS

This paper has presented a simple approach for determining the spatial and temporal
extents of a queue upstream of a bottleneck, using a modified input-output diagram.  The
inherent advantages of the basic input-output diagramits simplicity and utilitymake it
quite useful in its traditional form for measuring the delay within a system.  The
modification to the input-output diagram proposed in the paper (adding the “back of
queue” curve) makes this tool even more versatile, enabling the evaluation of waiting
times, distances traveled in queue, and queue lengths without the laborious construction of
the more conventional time-space diagram.

The proposed graphical approach should be particularly useful, because one can see at
a glance how measures of performance depend on decision variables and specific data.
These measures allow a proper examination of several impacts of various traffic control
and design alternatives, including fuel consumption and emissions.  The graphical
approach further indicates the maximum queue length, and the time at which this
maximum occurs, quite clearly.  These measures, which can easily be miscalculated using
other means, have quite significant implications on the storage requirements at
intersections, and the coordination of closely spaced traffic signals, among other things.

If one’s primary goal is to determine the total time spent, or distance traveled, by all
vehicles in queue, then one need not construct the “back of queue” curve as described in
the paper.  From a limited amount of data the simple expressions developed above can be
easily automated in a spreadsheet to provide the desired result.  Alternatively, these two
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measures can be estimated as fixed multiples of the total delay to all vehicles, a parameter
which is calculated by many modeling packages.

Although the approach has been shown to apply under many circumstances, the
technique is not applicable in its present form to the oversaturated traffic signal case, nor a
bottleneck which changes capacity more than once.
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   FIGURE 2    Input-Output Diagram
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   FIGURE 3    Locating the Back of Queue Curve, B (t ), for Constant Departure Rate
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FIGURE 5    Locating the Back of Queue Curve, B(t), for Departure Rate
Which Changes Once

"Modified" Input-Output Diagram, Capacity Changes Once at t = 500 s
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FIGURE 6    Representing Distances Travelled in Queue on the Input-Output Diagram

"Modified" Input-Output Diagram, Capacity Changes Once at t = 500 s
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FIGURE 7 Vehicle Trajectories at the Traffic Signal
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